Nanosensors for food safety applications

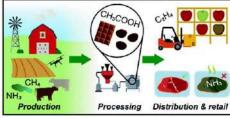
2 November 2022, CSIR International Convention Centre

Katekani Shingange

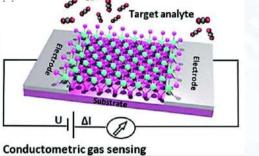
epartment: cience and Innovation EPUBLIC OF SOUTH AFRICA

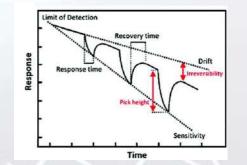
Outline

- Background: Gas sensors
- □ Why research on gas sensors?: The need
- □ Choice of sensing layer
- Research interest: Nanosensors for food monitoring
- □ Strategic approach
- Outputs: Ethanol detection
- Summary
- Acknowledgements



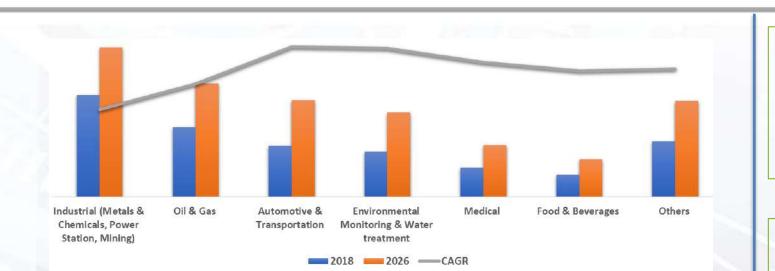
Background: Gas sensors


Agriculture and food


Health and lifestyle

Choice of material

Sensor parameters



Challenges

- 1. High operating temperatures (high power consumption)
- 2. Selectivity ability to select a specific gas amid others
- Stability ability to reproduce the sensing characteristics over a period of time

- □ Approaches to overcome the challenges
- 1. Morphology engineering
- 2. Doping/development of heterostructures
- 3. Surface sensitisation with noble metals

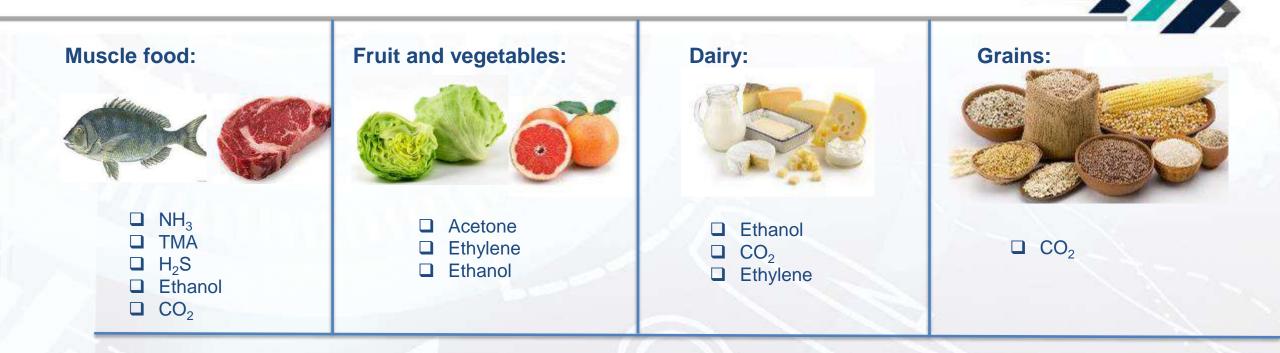
Why research on gas sensors?: The need

<u>Global Gas Sensors Market Analysis by Top Companies Engineering, AMS</u> <u>AG, Amphenol Corporation AB, MSA Safety Incorporated, Sensirion AG and</u> <u>City Technology (prweb.com)</u>

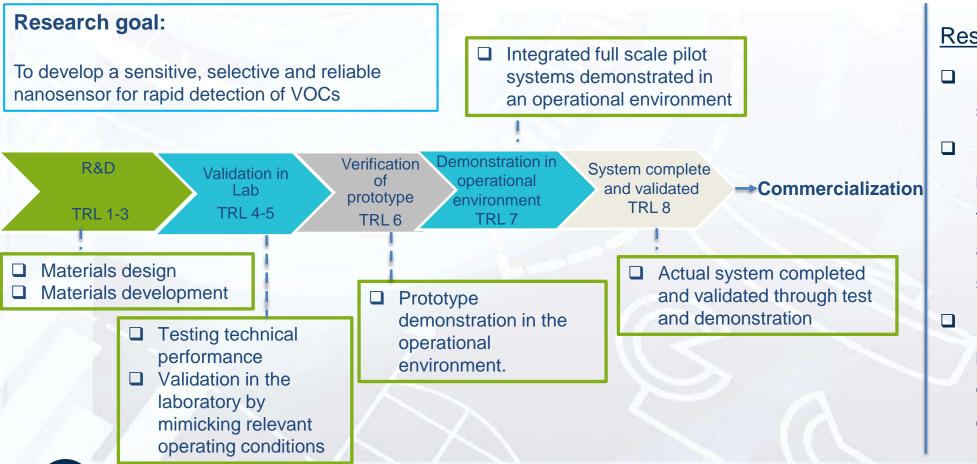
Sensors by technology

- Solid State/Metal Oxide semiconductor
- Electrochemical
- Infrared
- Optical

Gas Sensors Market Size and Forecast

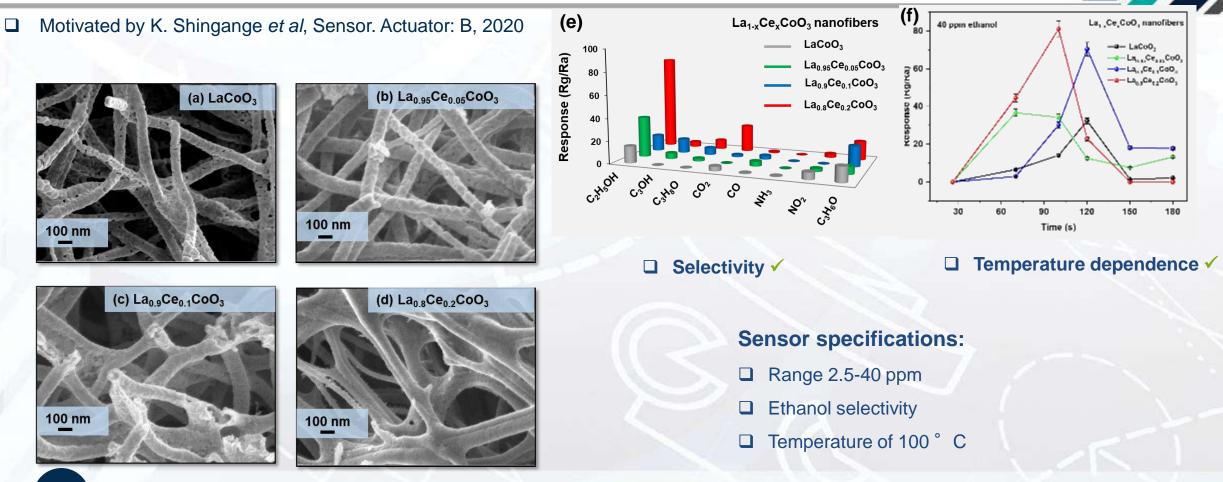

- The Global Gas Sensors Market was valued at US \$939.5 million in 2018
- The Global Gas Sensors Market is projected to reach USD 1,575.9 Million by 2026, growing at a CAGR of 6.81% from 2019 to 2026

Choice of sensing layer


Research interest: nanosensors for food monitoring

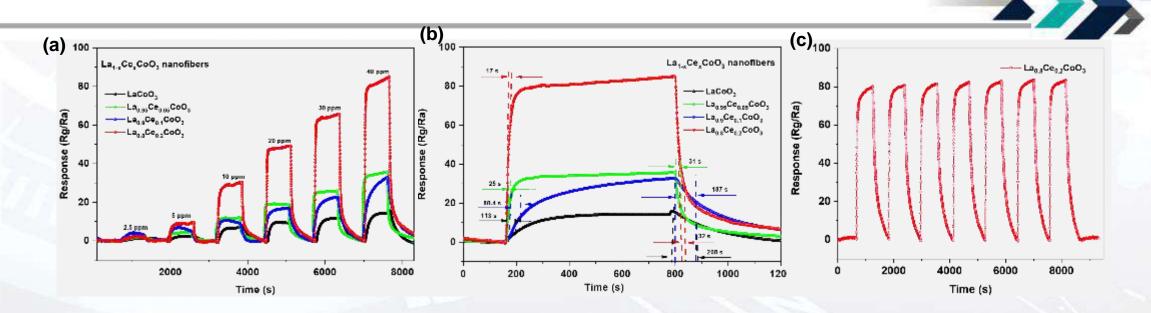
Need:

Sensitive, selective and reliable gas nanosensor for food quality status monitoring


Strategic approach

Research objectives:

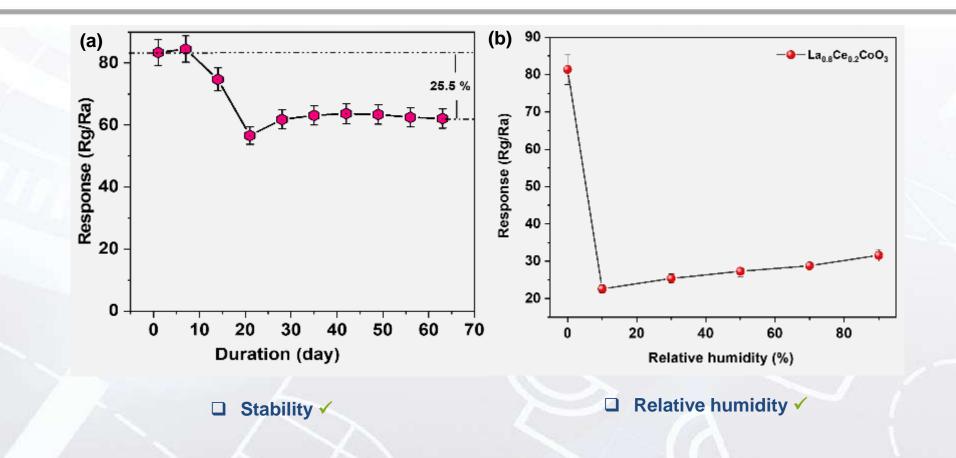
- Design nano-enabled based sensors
 - Investigate the nano-enabled
 based gas sensors performance
 towards the VOCs emitted by fruit
 and vegetables as per application
 specifications
- Correlate the gas sensing performance to ripening/ spoilage of fruit and vegetables, with focus on ethanol, acetone and ethylene


Outputs: Ethanol detection

Enhanced ethanol sensing abilities of $La_{1-x}Ce_xCoO_3$ ($0 \le x \le 0.2$) perovskites nanofibers at low operating temperatures

8

Outputs: Ethanol detection continued...



□ Response ✓

□ Rapid response and recovery ✓

□ Repeatability ✓

Outputs: Ethanol detection continued...

Outputs: Ethanol detection continued...

Sensing material	T (°C)	Conc. (ppm)	Response	T _{res} / T _{rec} (S)	Ref
LaMnO ₃ -SnO ₂	260	100	20	6/34	[1]
Ag/Zn-LaFeO ₃	55	100	64.2	100/20	[2]
La _{0.75} Ba _{0.5} FeO ₃	210	500	136.1	42/40	[3]
LaAlO ₃	350	1000	16.45	16.45/-	[4]
LaCoO ₃	120	40	32.4	26/66	[5]
NiO@LaFeO3	240	10	14.7	2/9	[6]
La _{0.8} Ce _{0.2} CoO ₃	100	40	83.4	17/32	This work

[1] D. Chen *et al*, J. Nanopart. Res. 20 (2018) 1-10
 [2] M. Chen *et al*, Adv. Mater. Interfaces. 6 (2019) 1801453
 [3] J. Xiang *et al*, Mater. Chem. Phys. 213 (2018) 122-129
 [4] W. Haron *et al*, Ceram. Int. 43 (2017) 5032-5040.
 [5] K. Shingange *et al*, Sens. Actuators B. 308 (2020) 127670.
 [6] P. Hao *et al*, Appl. Surf. Sci. 515 (2020) 146025.

Summary

- The nanofibers demonstrated great selectivity to ethanol along with the sample having the highest amount of Ce (La_{0.8}Ce_{0.2}CoO₃) achieving a response greater than twofold the one attained for LaCoO₃ at an operational temperature of 100 °C, as well as rapid response and recovery time of 17 and 32 s.
- The sensors based on La_{1-x}Ce_xCoO₃ nanofibers, particularly La_{0.8}Ce_{0.2}CoO₃, could be considered as a prospective energy-efficient material to be utilised for low levels of ethanol molecules detection in applications, such as food shelf-life monitoring in the food industry

Outlook

- □ Test at lower concentrations (< 1ppm)
- □ Include ethylene for selectivity
- □ Stability tests over a longer period (6 months)

Acknowledgements

- □ Sensors for food safety group
- □ Centre for Nanostructures and Advanced Materials
- □ Characterisation facility
- □ Council for Scientific and Industrial Research
- Department of Science and Innovation

THANK YOU