Keeping Oxygen Out and Freshness In: Bag-in-Box Films

2 November 2022, CSIR International Convention Centre

Jayita Sinha Roy

epartment: cience and Innovation EPUBLIC OF SOUTH AFRICA

Background

Tighten the Bell-curve (less variance and/or shift to the right

Ways to extend shelf life of BIB wine

- Addition of appropriate amount of sulfur dioxide (SO₂)
- Proper final filtration and filling line sterility
- Select/design packaging with high gas barrier/low permeability
- Minimise damage to the barrier film
- Minimise storage temperature
- Minimising oxygen (O₂) pickup during filling

Parameters determining wine acceptability

- Colour
- Taste (Titratable acidity/pH)
- Free $SO_2 > 10 \text{ mg/L}$
- Judgement of professional tester
- Comparison of same wine in glass bottle with a screw cap

Factors that affect the shelf life of wine

A series of chemical reactions due to oxidation diminishes the quality of wine, such as colour, aroma,

etc.

Factors that affect the shelf life of wine, cont.

months

mg/L SO,

Drop in free SO, =

34 mg/L

Available solutions

ac)

5

Using a **sachet or adhesive labels** containing:

• Metal-based **O₂** *scavenger* (e.g. Shelfplus O₂, Zero 2)

• *Improved barrier*: Oxygen block together with nanoclay platelets

• Iron-based carbon dioxide (CO₂) emitter (such as Ageless, Fresh

How it works Fe \rightarrow Fe⁺² + 2e⁻ $\sqrt{4}$ O₂ + H₂O + 2e⁻ \rightarrow 2 OH⁻ Fe⁺² + 2(OH)⁻ \rightarrow Fe(OH)₂ Fe(OH)₂ + $\sqrt{4}$ O₂ + $\sqrt{4}$ H₂O \rightarrow Fe(OH)₃

Approach

Acceptable dose of CO₂ in wine

	Accepted dose	Active film		
•	According to the wine maker, specifications are about a maximum of <u>400 mg/L for</u> reds and <u>600-800 mg/L for whites</u> . Recommended concentrations of CO_2 (at 20 °C) in <u>still</u> , <u>semi-sparkling</u> and the	Expected amount after 12 months ~ 174 ppm		
	sparkling wines are < 2 g/L, 2 to 5 g/L and > 6 g/L, respectively.			

Films for packaging foodstuffs - US 2021/0138775 A1

BIB market statistics in SA

5L: > 17million

3L: > 11 million

10

Material and process optimisation

Product development challenge and learning

12

CSIR

Touching lives through innovation

Technical data sheet

Preliminary product data sheet

Polyzimo[®]

Active Polyethylene Formulation

Fe	eatures	Applic	ations
•	Releases carbon dioxide (CO ₂) if in contact with acidic food (see Figure 1)	:	Bag-in-box Acidic food and
•	Wine bag-in-box application: Compensation of loss of sulphur dioxide over time that can extend shelf life, prevent discoloration of	5250	beverage packaging
	wine and possible reduction of sulphite.	7	

Suggested usage

Polyzimo[®]MV270 can be used directly during the film processing. Polyzimo[®]MV270 can be diluted with polyethylene of desired choice during film processing to achieve the desired level of CO₂ release.

Material properties/

Properties *	Test method	Test method	Value	Unit
Density	Immersion method	ISO 1183	1.16	g/cm ³
Melting temperature	At heating rate 10 °C/min	ASTM D3418	121.23	°C
Crystallization temperature	At cooling rate 10 °C/min	ASTM D3418	111.99	°C
Onset degradation temperature	5wt% loss under O ₂ at 10 °C/min	ASTM E 2550	432.92	°C

Expected film properties

The film properties will depend on the thickness of the blown film as well as the polymer grade used in the dilution. Trend of inert CO₂ release from the 1L bag made of polyethylene film containing Polyzimo®MV270 as a function of time is demonstrated Figure 1. **Packaging**

Polyzimo[®]MV270 is supplied in pellet form packed in 25 kg bags.

Figure 1. The trend of CO2 released as a function of time.

Storage

Refrain from direct sun light. Polyzimo⁶MV270 is recommended to store in a cool and dry condition. Drying is preferable before film processing.

Date of issue: August 2021

* Specimens used for characterizations are in the pellet form. The information provided in this document is of good faith. Properties might differ depending on the polyethylene grade and hence respective processing conditions.

Film and BIB production at industrial scale

Film properties

CO₂ release

Retention of wine colour

17

Prototyping and filling wine using automated filling line

Preliminary industry test results

No specific trends were observed. Variation in results is considered normal.

Sensory composition

For red wine, no differences in sensory composition between the control and treatment were observed up until 30 days after filling.

Wine	Storage	TA (g/L)	рН
Red wine (CABS/MERL)	Before filling	5.39	3.68
from tank			
Red wine in control BIB	After filling	5.17	3.71
Red wine in active BIB-1	After filling	5.20	3.71
Red wine in control BIB	30 days after filling	5.19	3.73
Red wine in active BIB-1	30 days after filling	5.17	3.73

Way forward

• Establishment of test protocol: Confirmation of CO₂ release and how to separate the effect of SO₂ and CO₂.

(A)

• Possible chemical reactions responsible for SO₂ depletion in wine.

- Shelf-life testing of wine and crystallise the value proposition.
- Technology transfer and manufacturing process optimisation.

(C) $2HSO_3^- + O_2 \leftrightarrow 2H^+ + 2SO_4^{-2}$

Conclusion

Acknowledgements

- DSI-CSIR Centre for Nanostructures and Advanced Material
- TIA
- Industries assisted with technical validations
- Colleagues

Technology development and testing for advanced and sustainable packaging addressing food security and striving towards a circular plastics economy

E-mail: JBandyopadhyay@csir.co.za; Tel: +27 12 841 3029